

TEXAS A&M UNIVERSITY SOUNDING ROCKETRY TEAM

Deflector Plate CFD Study Podium Session IREC 2017

- Typical Static Engine Test
 - -L-P class rocket engine
 - Volatile conditions
 - •Mach 4+
 - •5,000+ $^{\circ}$ F
 - •20+ atm

- NP-915 Static Engine Test
 - -Nominal burn
 - -Complete burn-through of 0.25 in thick carbon steel plate
 - -Damage to Riverside Test Cell (RTC)
 - Undesirable exhaust gas accumulation in cell enclosure

• Goals

- Improve evacuation of exhaust gases through CFD optimization of deflector plate geometry
- Improve material selection for deflector plate construction

Testing: Pre-Processing

Pre-Processing

- 3 cases for simulation modeled to scale in Solidworks
 - •Control Case existing geometry 47.45° (from vertical) slant
 - •**Test Case** #**1** 20° (from vertical) slant curve horizontal exhaust manifold
 - •**Test Case** #2 40° (from vertical) slant curve 19.35° (from horizontal) slant exhaust manifold

General Blueprint

Control Case

Test Case #1

Test Case #2

Pre-Processing

- -Boundary conditions established¹:
 - •Wall conditions adiabatic, no-slip, with finite surface roughness
 - •Pressure outlet conditions (vent) environmental-extrapolated boundary at ref. conditions
 - •Stagnation inlet conditions (nozzle) supersonic static pressure, static pressure, temperature
- -Meshers selected:
 - Polyhedral (unstructured)
 - Automated surface remesher
 - •Prism layers
 - •Final cell counts: ~1.3 million cells

¹ Detailed in the extended abstract submitted before the 2017 IREC

Testing: Pre-Processing

Pre-Processing

- -Physics models selected:
 - •Standard, steady, three-dimensional flow, assuming ideal air
 - Coupled energy and coupled flow
- -Solvers selected:
 - •Reynolds-Averaged Navier-Stokes (RANS) equations
 - •K-epsilon (k-ε) turbulence model
 - •Advective Upstream Splitting Method (AUSM) and Flux Vector Splitting (FVS) coupled inviscid flux function (2nd-order discretization)

-Courant-Friedrichs-Lewy (CFL) condition:

- •2.0 for first 5,000 iterations
- •5.0 for next 5,000 iterations

Approximately 2,000 wall-clock hours used for all simulations (provided by Texas A&M University HPRC)

High Performance Research Computing

A Resource for Research and Discovery

Results: Profiles

Results: Performance Metric

- Mass flow rate used as a comparative metric
 Efficiency of evacuating exhaust gases
- 10,000 iterations performed to convergence

	Mass Flow Rate
Control Case	24.5 lb/s
Test Case #1	31.0 lb/s
Test Case #2	26.2 lb/s

- Deflector Plate Construction
 - -Materials:
 - •Reinforced steel plates
 - •Refractory concrete (improved thermal resistance)

Redesigned Geometry

-Geometry:

- •Flat steel plate (flow impingement)
- •Refractory cement curve
- •Flat steel plate
- •Exhaust manifold

Burn & Flow Deflection

Post-Burn

QUESTIONS?

AEROSPACE ENGINEERING TEXAS A&M UNIVERSITY

MECHANICAL ENGINEERING TEXAS A&M UNIVERSITY